Novartis MS Innovation Summit

State-of-the-nation analysis of health innovation and digital technologies in MS

This document was commissioned by Novartis Pharmaceuticals UK Ltd and has been prepared by W2O Group. It is for use in the OpenMinds meeting only, and otherwise remains confidential, and not for distribution.

Contents

1	Obj	Objectives3				
2	Set	ting the scene	. 3			
	2.1	Vision for digital transformation in the NHS	.3			
	2.2	Unmet needs in MS	.4			
3	Тес	hnology to address unmet needs in MS within the NHS	. 5			
	3.1	Diagnosis of MS: Improving functional assessments	.5			
	3.2	Diagnosis of MS: Artificial Intelligence	.8			
	3.3	Treatment of MS: Individualising treatments	.9			
	3.4	Management of MS: Improving patient centricity	11			
	3.5	Management of MS: Rehabilitation	16			
	3.6	Technology implemented in adjacent therapy areas	18			
4	Cor	nclusions and future directions	22			
5	Ref	erences	25			

1 **Objectives**

Multiple sclerosis (MS) is a chronic, disabling and progressive condition that affects approximately 126,000 people in the UK.¹ The progressive nature of MS and the related functional damage can significantly affect patients' daily activities, quality of life and is associated with high levels of emotional, social and physical implications.²

Technological and digital health innovation has the potential to alleviate the burden of disease for people with MS (PwMS), their care givers and the health system, however digital transformation in this sector has not yet been fully realised. In a challenging funding environment with a high demand for services, improvements for technological and digital health innovation may be viewed as a low priority. Across the NHS and third sector there is still huge strides yet to be taken to enable the use of digital technology to meet the complex needs of the MS community.

This state-of-the-nation analysis addresses the current unmet needs in MS, and reviews the existing technology support for PwMS, caregivers and HCPs across the UK, highlighting areas for future direction.

2 Setting the scene

2.1 Vision for digital transformation in the NHS

The NHS Long Term Plan published in January 2019, outlines ambitions for healthcare improvements over the next decade and highlights the importance of technology to enhance patient care. NHSX is responsible for driving digital transformation and leading policy, implementation and change in this area.^{3,4}

NHS RightCare (the body involved in improving spending and patient outcomes by analysing patient population data⁵) have reported that improving the use of technology is a key priority for MS, including:⁶

- Sharing protocols across MS teams and providers
- Robust monitoring of disease modifying therapy (DMT)
- Patient self-managing of their condition using digital tools
- Sharing of digital care planning procedures
- Improving data analysis around magnetic resonance imaging (MRI), planning and avoidable hospital admissions

The uptake of data and technology to coordinate care is not widespread across the NHS and many people with MS have not yet benefitted. There is uncertainty and concern about what data can be shared among both patients and professionals, while improvements in computer systems and the ability of different systems to operate together (also known as interoperability) are needed.⁷

The Department of Health has also set out the ambition that all care records will be digital real-time and interoperable (i.e. allowing information held in one department or system to be readily available to another without significant or expensive development efforts).⁸ One

example of technology that the NHS is implementing as part of this is Open Application Programming Interfaces (APIs), which aims to improve interoperability, increase flexibility and system selection to suit different clinical or business functions, and foster an environment of digital innovation.⁸

Broadly speaking, it is up to individual service providers rather than national bodies to adopt new technologies. A survey of 45 NHS Trusts revealed that although the NHS recognises the value of technologies such as artificial intelligence (AI), it is lacking clarity about the strategic direction and implementation for clinical practice.⁹ A report from Deloitte UK analysing apps and technological solutions noted that staff, particularly doctors, are reluctant to engage with technology due to concerns regarding the limited evidence on outcomes, including cost savings.¹⁰

2.2 Unmet needs in MS

For the purpose of this review, an unmet need is defined as "healthcare needs that are not optimally met". This may include people who have healthcare needs but are not aware of them, or people who have poorer quality treatment than ideally should be the case.^{11,12}

Despite the attention afforded by MS in recent years, many unmet needs remain in terms of therapeutics, disability avoidance and outcome measures. More progress is needed not only in basic science, genetics and other factors, but also in understanding patients' priorities, which may improve their outcomes and quality of life. Further attention also must be given to managing the costs associated with treatment.¹³

A 2015 review addressing the unmet needs of PwMS highlighted the following areas of greatest importance:¹³

- Diagnosis of MS
 - Identification of useful tools and biomarkers
- Treatment of MS
 - Delaying progression and development of better treatments for progressive MS
 - Providing neuroprotection
 - Delaying or avoiding disability
 - Reduction of active symptoms more effectively
 - Individualisation of treatment

• Management of PwMS

- Improvement of adherence to current medications
- Prevention or amelioration of the adverse effects (AEs) of current medications
- Detection and management of comorbidities including muscle stiffness and spasms, and vision problems
- Obtaining better measurements of functional outcome
- Emotional support for patients and caregivers

3 Technology to address unmet needs in MS within the NHS

3.1 Diagnosis of MS: Improving functional assessments

Identification of useful tools to facilitate and improve management of MS is a key unmet need for PwMS.¹³ Improving functional assessments of PwMS may help to speed up diagnosis and monitoring of MS, and free up resources in the NHS. In addition, early intervention and/or delaying disability results in a greater cost effectiveness overall for healthcare systems.¹⁴

In this area, several technological advances have been identified, particularly within magnetic resonance imaging (MRI) which plays an integral role in both MS diagnosis and monitoring (Table 1).¹⁵

Molecular biomarkers may also be useful to complement MRI scans.¹⁶ Biomarkers have varying specificity, expense and other challenges for use in daily practice, but technological innovation may assist in the identification of procedures (e.g. lab processes such as tissue microarrays¹⁷, gene expression profiling¹⁸, proteomics and mass spectrometry¹⁹) and screening processes (e.g. bioinformatics-based methods of interpreting data and validating whether biomarkers have diagnostic, predictive or prognostic value) for PwMS.^{13,20}

The biomarkers currently used in clinical practice are:16

• Oligoclonal IgG bands (OCBs)

- Up to 90% of PwMS exhibit OCBs in the cerebrospinal fluid (CSF), and the inclusion of OCBs is part of the McDonald criteria for diagnosis of primary progressive MS (PPMS), as well as being predictive of conversion from clinically isolated syndrome (CIS) to MS
- John Cunningham Virus (JCV) antibodies
 - As a biomarker for stratifying the risk of progressive multifocal leukoencephalopathy (PML), it is worth noting that ~50% PwMS are JCV antibody seropositive, but <1% are prone to develop PML. Therefore, more specific biomarkers may help to individualise treatment strategies
- Neutralising antibodies to interferon beta (IFN-β)
 - \circ ~40% of IFN-β treated patients do not respond to treatment. IFN-β induces an immunologic response by generating neutralising antibodies which may be used to identify non-responders

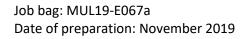

Technology	Stakeholders	Function	Method	Availability and usage	References
Hardware (machine	es)				
Hyperpolarised carbon MRI	University of Cambridge, led by Dr Ferdia Gallagher	Highlights areas of the brain with lesions	Uses radiolabelled carbon-13 pyruvate which is metabolised differently in lesions versus healthy brain tissue	Research use	21–23
Dual-calibrated functional (f)MRI	Cardiff University Brain Research Imaging Centre (led by Prof Richard Wise, Prof John	Highlights areas of the brain with lesions with a resolution of a few millimetres	Shows the amount of oxygen that the brain is consuming (CMRO2) which reflects neural activity and can be altered with diseases	Currently focused on glioma, but could be expanded into MS once proof of concept is established	24
	Staffurth and Dr Yulia Hicks	Speeds up data acquisition to ~10 minutes		Would make the technique suitable for clinical use	
Software (compute	r programmes, image	acquisition and analysis e	etc.)		
Platform for MS- specific regional MRI and Positron emission tomography (PET) analysis	Ixico	Determines validated volumetric image endpoints e.g. eligibility, stratification, safety and efficacy endpoints	Uses proprietary algorithms	Available	25
Icobrain MS	Icometrix	Visualises any white matter abnormalities, brain volume, and tracks changes over time	AI brain imaging software	Approved for clinical use by the FDA	26,27

Table 1. Identified areas of current research and use of MRI in MS

Sensors, software and data analysis	Biogen and Google X collaboration	Tracks disease progression	Tracks patients and their data to understand disease onset, and develop early interventions	In development	28
Integrated Cognitive Assessment (ICA)	King's College London, University of Tehran, and Cognetivity Ltd, London. Led by Seyed- Mahdi Khaligh- Razavi and Chris Kalafatis	Distinguishing normal cognitive function and MS impaired function	A computerised test, which takes a patient ~5 minutes to complete, is self-administered, and language independent	Available, and is being further developed	29

3.2 Diagnosis of MS: Artificial Intelligence

Artificial intelligence (AI) is an area of considerable interest for the NHS. In June 2019, NHS Chief Simon Stevens announced a global call for evidence, i.e. a call for NHS staff and technologists to incentivise the best use of evidence-based AI and machine learning technologies across the NHS³⁰. The Department of Health and Social Care invested £250 million into AI for healthcare; notably, diagnostics,³¹ with reimbursement reforms to the NHS tariff and other payment systems to incentivise quick and safe adoption.³⁰ The ultimate aim is for the NHS to become a world leader in AI and machine learning by 2024.³⁰ From a more fundamental research perspective, the government awarded £17.3 million to the Engineering and Physical Sciences Research Council to support the development of AI and robotics in UK universities.⁹

Diagnosis of MS is complex because there is no single diagnostic experimental method currently used in clinical practice and its signs and symptoms are variable.³² Decision support systems using AI can facilitate diagnosing the disease. The advantages of such systems include increased reliability, accuracy, consistency, speed, and decreased cost.³² A 2018 review by Arani et al. stated that intelligent computer systems "have the potential to be applied in clinical practices and research in MS".³³ AI may also be useful in the individualisation of MS treatment, as will be discussed in Section 3.3.

Outside of MS, AI does already have some uses in the NHS. A survey asking 45 NHS Trusts about their use of AI revealed that 43% were investigating the uptake (in particular virtual assistants, speech recognition technology and chatbots) to ease the pressure on healthcare workers.⁹ Currently, use of AI in the NHS is sparse, but examples of adoption include:⁹

- A NICE-approved mobile heart monitor (KardiaMobile) that uses AI to detect, monitor and manage atrial fibrillation (AliveCor)
- An algorithm to identify disease from images of the back of the eye (Moorfields Eye Hospital and Google DeepMind)
- An instant triage system to replace 111 (urgent and emergency care service) (Babylon and North Central London Clinical Commissioning Group)
- A holistic care management system to enable individuals and caregivers to select the most appropriate provider to deliver services (IBM Watson and Harrow Council)
- In paediatric medicine, a chatbot that allows children to ask questions about hospital admission (IBM Watson and Alder Hey Children's Hospital)

3.3 Treatment of MS: Individualising treatments

The majority of unmet needs in MS are related to treatment, including increasing efficacy and reducing adverse events (AEs).¹³ Since MS treatments are not equally efficacious or tolerable in all patients,^{34,35} predicting who would benefit from certain treatments before initiation would aid healthcare professionals (HCPs), healthcare systems and patients by slowing disease progression, improving patient satisfaction, and saving costs.¹³

The July 2018 MS Society report identified that there is a scarcity of longitudinal outcomes data aggregated across the MS population, and inconsistent collection of treatment outcomes at an individual patient level leading to a lack of knowledge about the effectiveness of treatments in various patients. Collection of data, for example through remote technologies and wearables, may help researchers develop new treatments, and inform better prescribing practices.⁷

The report also highlights that currently there are no agreed, robust outcome measures for MS. Short-term and predictive measures tend to be used rather than benchmarks for progression over time. Where data is collected, it is often not visible to planning services to help them best understand and meet the needs of the MS population in a particular area.⁷

Blueteq forms are necessary so that NHS England can see which patients receive disease modifying therapies (DMTs) and in what circumstances. By improving the process of data capture, more relevant information may be gained. Moreover, if other data beyond EDSS is captured, this would aid research into the personalisation of medicines.⁷

The MS register, a data bank of real-world evidence, could provide rich information to commissioners and planners, but currently it only covers a sample of the MS population, and it cannot be used systematically across the country.⁷ Raising awareness of the MS register and its value may assist the capture of data, and ultimately aid research and individualisation of treatments.

Until 2017, no studies had been able to predict individual treatment response. However, bioinformatic analyses of large patient cohorts enabled development of a predictive algorithm of future response to MS DMTs based on demographic, clinical and simple paraclinical predictors.³⁶ The study included a detailed assessment of accuracy and robustness, and resulted in predictive models that will be made available to physicians in the form of a web-based tool, incorporated in the MSBase data entry software, with the aim of providing supporting information to complement the treatment decision process.³⁶

More recently, in 2019, Dr Parashkev Nachev and Professor Olga Ciccarelli at UCL, led a study which developed an AI-based method that can predict patients with relapse remitting multiple sclerosis (RRMS) response to treatment, discriminating between pre- and post-treatment changes with higher fidelity than previous methods, however the study only focussed on imaging changes.³⁷ In the future, the approach may enable:^{37,38}

- Guided therapy choice in individual patients
- Detection of treatment success or failure at an earlier timepoint

• Trials of new therapies to be conducted more effectively with small patient cohorts

In the future, research may extend the approach to predicting clinical response to DMTs including cognitive and motor outcomes.^{37,38}

A range of molecular biomarkers are under investigation for potential use in diagnostics or predicting treatment response. These are listed in Table 2.

Biomarker	Description	Utility
NfL	Axonal protein reflecting inflammation- mediated axonal damage	CSF biomarker of acute axonal damage indicating poor long-term prognosis. Biomarker of DMT- mediated effects on axonal damage
NfH	Axonal protein reflecting acute and ongoing axonal damage	CSF biomarker of accumulated axonal damage in progressive MS. Predictive of more severe EDSS progression and brain atrophy
CHI3LI, CHI3L2, CHIT1	Released from activated astrocytes	Prognostic CSF biomarker of conversion from CIS to MS. Biomarker of inflammation- associated disease activity
sCD14, sCD163, TREM-2	Soluble cell surface receptors	CSF biomarkers of microglia/ macrophage activation. Potential to reflect disease activity and therapeutic response
lgM	Oligoclonal lipid-specific intrathecal antibodies	CSF biomarker of conversion from CIS to MS and a more aggressive disease course. Potential as biomarker for progressive disease patients who may benefit from DMTs

Table 2. Emerging CSF biomarkers in MS³⁹

As discussed above, technological innovation may assist in the identification and screening of biomarkers.^{13,34}

3.4 Management of MS: Improving patient centricity

Patient-based care puts the patient at the centre of their treatment, care and management and actively involves patients in their healthcare status. Advances in technological innovations may facilitate a patient-centric model of care by helping patients to become more involved in their treatment and management⁴⁰, thus alleviating strain on the NHS and improving patient-reported outcomes (PROs).

For patients to use technology and support self-management, a certain level of knowledge, skill and confidence is required to meaningfully participate in their healthcare; this concept is referred to as 'patient activation'.⁴¹ Patients who are more activated are more likely to have a regular source of care, obtain preventative care and are less likely to delay seeking care compared to less activated patients.⁴¹ High levels of activation have been associated with better outcomes, healthy behaviour, adherence to treatments, higher satisfaction and better patient experience.⁴¹ In contrast, less activated patients are almost twice as likely to be readmitted to hospital within 30 days of discharge than a more activated patient.⁷

Apps are already playing a key role in this shift towards patient-centred care. The 2018 MS Society report recommends that PwMS use digital tools to self-manage their condition where possible.⁷ Many apps are available for patients, carers and HCPs which span a range of functions and address several unmet needs.^{40,42,43} An extensive list of apps can be found in other references,^{40,42,43} however some key examples have been outlined in Table 3.

Table 3. Key apps for use by PwMS, carers and HCPs

App name	Stakeholders	Function	Availability and usage	References
SymTrac	Novartis	Prompts patients to monitor their symptoms and wellbeing over time, helping to identify relapses	Approved on the NHS Health Apps Library, Free to download	40,44
myBETAapp	Bayer	Helps patients and caregivers to track injections and injection-site history	Free to download	40,45
MSBuddy	Healthline Networks Inc	Facilitates discussion and allows patients to share stories and experiences	Free to download	46
My MS Diary	Appxient	Tracks injection sites automatically and manages stock of injections	Free to download	47
MS Energise	University of Bournemouth, Auckland University of Technology, University of Brighton, MS Society	Adaptation of a group-based face-to-face fatigue management programme (FACETS) into a digitised format, particularly to deliver the "homework" element of the programme	In clinical trials	48
Thought Sort	Shift.MS	Helps patients access cognitive behavioural therapy (CBT) to manage emotions and mood	Free to download	49
Basic MS Explorer	Basic Home Infusion Inc	Allows patients to track symptoms, provides reminders for medication,	Free to download	50

		generates a report on		
		progression, cognition,		
		medication and compliance		
		Patients use the app whilst		
		participating in their daily		
Becare MS Link	BeCare Link	activities. This generates	Free to download	51
		real-time data which is used		
		for EDSS assessment		
Cure MS	BDDevCo	Provides information and	Free to download	52
	BDDevCo	research about MS	Fiee to download	
Healthstories		Tracks patients' symptoms		
MS	Jacob Wachsman	and shares with friends and	Free to download	53
1412	Jacob Wachsman	caregivers		
Multiple				
sclerosis		CME-accredited educational	Free to download	54
virtual education	The Wyanoke Group	training application for HCPs	Free to download	
academy				
Noteness	Martin Hartl	MS diary app for patients	Free to download	55
		Aimed at HCPs, creates		
MS Tonography		dynamic visualisations of MS		56
MS Topography	S Krieger MD	and encourages discussion	Free to download	
		between patients and HCPs		
		Round-the-clock motivation,		
MSFocus Radio	Multiple Soleragia Foundation	education and empowerment		57
	Multiple Sclerosis Foundation	for patients, via audio	Free to download	0.
		content		
		Provides access to MS-UK		
	Disital Edition Tachastan	bimonthly magazine (single		58
My MS-UK	Digital Edition Technology	issue, £2.99, 1-year	Free to download	
		subscription, £14.99)		

Multiple sclerosis spotlight	International Medical Press, UCL, Merck KGaA	Aimed at HCPs but suitable for patients, course about optimising treatment of MS using NEDA	Free to download	59
Multiple Sclerosis 101- Treatment and Recovery Tips	BigDave Lab	Provides information about MS and it's symptoms	£2.99	60
Multiple Sclerosis Chat	Kingfish Apps	Allows pwMS to talk with one another, HCPs and carers	Free to download	61
Multiple Sclerosis Messenger	KingfishApps	Allows pwMS to talk with one another, HCPs and carers	Free to download	62
Multiple Sclerosis Support	MyHealthTeams	Social network for pwMS	Free to download	63
Pre-Meet: Multiple Sclerosis	Darin Okuda/Ardireo	Information for patients about what to expect during their MS specialist appointment	Free to download	64
MS Fatigue Fix	Darin Okuda/Ardireo	Information about fatigue for patients, including symptom tracker	£4.29	65
Understanding MRI	Darin Okuda/Ardireo	Information for patients about MRI, and understanding MRI results	£4.99	66
MS Relapse tool	Darin Okuda/Ardireo	Allows patients to evaluate symptoms and estimate probability of relapse	£1.79	67

Pain Solutions		Provides information about		
Pain Solutions: MS	Darin Okuda/Ardireo	MS pain and create	In development	68
		management strategies		

In a review by Giunti et al, 2018⁴² 30 MS apps were identified (UK-accessible, currently supported also listed in Table 3), with the most recurrent features being patient education, social media and data visualisation. However, the following gaps were noted in these 30 apps:⁴²

- For patient education, information was abundant but links to source materials were scarce
- Most (24) lacked a reminder system (notifications that remind PwMS to engage in activities)
- Most (29) lacked connectivity to external sensors (in this case, a Fitbit device) and instead relied on integrated capabilities within the mobile phone
- Most (29) did not offer a remote monitoring system meaning that users could not share their symptoms and lab results with their HCP
- Furthermore, another review noted that few apps have been translated into all languages⁴⁰

3.5 Management of MS: Rehabilitation

Delaying disability, reducing active symptoms, and detection and management of comorbidities are key unmet needs in MS.¹³ Physical therapy and rehabilitation help to manage symptom severity in PwMS. These interventions should be tailored to a patient and the degree of disability, with a focus on spasticity, walking, balance, upper limb function and cognition. Technology-aided rehabilitation is now widespread in clinical settings (Table 4) and has recently been proposed as an approach with great potential for restoring motor functions and activities.⁶⁹

Technology	Function	Examples	Availability and usage	References
Virtual reality (VR)	Motor assessment and rehabilitation	Functional electrical stimulation combined with passive robot assistance for arm movement and control Balance training programme Variable compliance joystick as wheelchair input Motor-telerehabilitation programmes	Additional research is needed before clinical use	70
Wearables*	Continuous patient-based monitoring, measurement of objective outcomes and delivery of feedback on daily-life activities	Accelerometers Gyroscopes Multi-sensor systems Infrared devices Force sensors Eye tracking	Further studies are required to assess reliability and accuracy before clinical use	40,71,72
Accelero- meters	Step count measurement to assess activity and function (e.g. gait, balance, fall)	Fitbit Flex StepWatch RT3 Actibelt Actigraph	-	73
Gyroscopes	Record orientation and movement to identify falls and analyse static balance and gait		Many digital devices already contain gyroscopes	73

Table 4. Technology-aided rehabilitation available in clinical settings or in development	Table 4.	Technology-aided	rehabilitation	available in	clinical	settinas o	r in development
--	----------	------------------	----------------	--------------	----------	------------	------------------

^{*}Electronic technology worn on the body or embedded into mobile and portable solutions (e.g. smartphones, watches, bracelets, clothing)

OVART	CIS			
Grip force sensors	Objective measurement of motor function	Gripable (assesses grip strength, hand opening, wrist motions, arm movements and cognition, and wirelessly connects with a mobile app)	Used by several NHS trusts	74
	Help patients move their limbs and electrom	Robot-assisted gait training: grounded end-effectors and exoskeleton devices	Robotics companies developing	
Robotics		Upper-extremity robotics and electromechanical devices	technology for MS are based in Germany, Switzerland, the US	69
	May enrich	Wii		
Gaming devices	rehabilitation and functional recovery	Kinect	-	69

3.6 Technology implemented in adjacent therapy areas

There is significant overlap between MS and other disease areas in terms of unmet needs. Therefore, technology being implemented in adjacent therapy areas may be adaptable for use in MS. Relevant examples for cross-over in technology in adjacent therapy areas which may have the potential to be utilised within MS are shown in Table 5.

Table 5. Technology in adjacent therapy areas which may be adapted for use in MS

Technology	Developed by	Usage	Function	Relevance to MS	References
Parkinson's d	disease (PD)				
KinetiGraph (PKG)	Global Kinetics Corporations (Australia)	Deployed to UK patients by University of Plymouth and University Hospital Plymouth NHS Trust	Wrist-worn PD monitors offer medication reminders and track involuntary movements by patient over 6 days which can be reviewed by HCPs	Similar sensors and approaches could be developed for MS to monitor symptoms and therefore improve patient outcomes	75,76
Fox Insight Wearables	The Michael J Fox foundation (a PD charity)	Clinical study	Smartwatches and an app collect data about motor symptoms in PD to track fluctuations and assist the development of computer programmes to estimate and predict objective measures of PD symptoms	Similar sensors and approaches could be developed for MS to monitor symptoms and therefore improve patient outcomes	77
e-AR	Sensixa (a spin-off from the Hamlyn Centre of Imperial College London)	Research use	A sensor worn behind the ear that monitors PD symptoms, gait, motion and acceleration in 3 dimensions, and user posture	Similar sensors and approaches could be developed for MS to monitor symptoms and therefore improve patient outcomes	78
Deep brain stimulation (DBS)	Multiple	Approved in the UK to treat PD, tremor and other conditions	Advances in DBS could improve efficacy e.g. electrode improvements, reduced size, and development of closed-loop systems	Tremor affects 25–32% of PwMS and NICE supports use of DBS for tremor and dystonia in MS	79–82
Diabetes					

Automatic blood glucose monitors	Multiple	Used in the NHS	Blood glucose monitoring in a standardised pattern improves outcomes versus self-monitored blood glucose data (which is often random collection)	Similar systems could improve measurement of patient monitoring and therefore patient outcomes	83,84
Multiple softwares (e.g. Accu- Chek Aviva Expert)	Multiple (Accu-Chek)	Used in the NHS	Software that links patient blood glucose monitoring data to real- time decision support for the patient e.g. automatic insulin dose calculator on the patient's glucometer	Although not directly applicable due to the more standardised dosing of MS DMTs, aspects of this system may increase patient self-management in MS	84
Fully automated physiologic insulin delivery systems	Multiple (including University of Cambridge, UK)	Clinical trials Some patients have created do-it- yourself systems through guidance from online communities (not FDA approved or recommended)	Software and hardware to measure glucose levels and deliver insulin when appropriate	Although not directly applicable due to the different mode of administration of MS DMTs, aspects of this system may increase patient self- management in MS	83,84
Numerous apps	Multiple	Used by many patients and frequently recommended by physicians	Apps which record medication administration, glucose logs and diet. However, >80% have no privacy policies and many actively transmit individual patient data to third parties without obtaining permission from the patient	Could improve the systems already in use for MS to increase patient adherence, and improve monitoring and patient outcomes	84

Diabetes Wellness Program	Samsung Electronics America, Inc. and WellDoc [®]	FDA licensed	An app which connects patient- generated glucose monitoring with automated text message responses, telephone- and web- based health coaching, and reports for the HCP	Similar approaches could be developed for MS to monitor symptoms and therefore improve patient outcomes	85
diasend®	Glooko	Available in the US, Canada, France, Germany	A unified population management system for clinics, including hardware for downloading a range of glucometers, remote monitoring and telemedicine interventions for glycaemic control	Similar sensors and approaches could be developed for MS to monitor symptoms and therefore improve patient outcomes	84,86
Electronic diabetes education	Multiple		Computer- or text-based health coaching to educate patients	Could improve the systems already in use for MS	84

4 **Conclusions and future directions**

This state-of-the-nation gap analysis addresses the current unmet needs in MS, and reviews the existing technology support for PwMS, caregivers and HCPs across the UK, and sought to subsequently highlight poorly served areas and challenges in technology uptake. The findings are summarised in Table 6.

MS treatment and management are the most well-serviced areas in MS digital and health technologies. A wealth of apps are currently available which allow PwMS to track symptoms or emergence of AEs, or connect with peers and their clinicians. The greatest barrier that has been identified to uptake of these apps is patient activation and engagement with technology.

In contrast, the identification and validation of biomarkers is an area with potential for considerable advances over the next few years. This could be as a result of developments in AI and machine learning, or improvements in hardware (for example MRI technology), however, as many of the technologies identified in this area are still at a stage of academic research, it will be a number of years before they reach clinical practice.

Regarding next steps, contacting NHSX would enable accurate determination of the technologies already implemented in MS healthcare by the NHS, as well as any related challenges and opportunities. To identify HCPs across the UK who are defining the future digital and technological landscape, it would be beneficial to contact the researchers and teams identified throughout this report.

The recent interest, willingness and available funds from the NHS to incorporate digital and physical technologies into the diagnosis, treatment and management of PwMS (and other disease areas) is positive, and it is therefore timely to be pursuing this research.

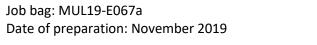


Table 6. Gap analysis of health innovation and digital technologies in MS in the UK

Unmet need in MS ¹³	Technology already in use in the UK	Innovative technology	Who is driving these initiatives forward?	Innovations impacting other therapy areas	
Diagnosis of MS					
Identifying tools	MRI	Improvements in MRI hardware and software	HCPs, academia, tech companies		
Identifying and validating	Bioinformatics	AI	HCPs, academia, pharma		
biomarkers		Improvements in hardware	Tech companies		
Treatment of MS					
Further delaying progression and developing better	Apps to detect symptoms	Remote monitoring	Pharma, HCPs, tech companies, academia	Apps to collect standardised patient data Systems for clinics and HCPs to make monitoring easier	
treatments for progressive MS		Wearables	Tech companies, academia	Sensors to monitor patient movement	
Providing neuroprotection	None identified to date				
Delaying or avoiding disability	Gripforce sensors to	VR	- Tech companies, academia	DBS	
	assess function	Robotics	recir companies, academia	663	
Reducing active symptoms more effectively	Apps to detect symptoms	Remote monitoring	Pharma, HCPS, tech companies, academia	Systems to monitor patients DBS	
more enectively		VR	Tech companies, academia		
Individualising treatment		Bioinformatics and AI	Academia, pharma		
Management of PwMS					
Improving adherence to current medications	Apps with reminder systems		Pharma, HCPs, tech companies	Automatic delivery and reminders	
Preventing or ameliorating AEs of current medications	Apps to detect AEs	Remote monitoring	Pharma, HCPs, tech companies		
Detection and management of		Remote monitoring	Pharma, HCPs, tech		
comorbidities		VR	companies		

Obtaining better measurements of functional outcome	Gripforce sensors	Wearables	HCPs, tech companies	Software systems to collect data on patient outcomes
Emotional support for patients and caregivers	Peer support groups (online / apps)		HCPs, tech companies, charities	Patient education apps
Sharing information between	Online groups		HCPs, tech companies,	
HCPs	Apps		pharma	

5 References

- Mackenzie, I. S., Morant, S. V., Bloomfield, G. A., MacDonald, T. M. & O'Riordan, J. Incidence and prevalence of multiple sclerosis in the UK 1990-2010: a descriptive study in the General Practice Research Database. *J. Neurol. Neurosurg. Psychiatry* 85, 76–84 (2014).
- Haussleiter, I. S., Brüne, M. & Juckel, G. Review: Psychopathology in multiple sclerosis: diagnosis, prevalence and treatment. *Ther. Adv. Neurol. Disord.* 2, 13–29 (2009).
- 3. NHSx. Who we are. https://www.nhsx.nhs.uk/who-we-are.
- 4. NHS. nhs-long-term-plan-version-1.2.pdf. (2019).
- 5. NHS England. What is NHS Rightcare?
- 6. NHS RightCare. Progressive Neurological Conditions Toolkit.
- 7. Castle-Clarke, S., Curry, N., Dorning, H. & Wetherly, L. Improving care for people with MS: the potential of data and technology. 84.
- 8. Department of Health & Social Care. Personalised Health and Care 2020. (2014).
- 9. Harwich, E. & Laycock, K. Thinking on its own: Al in the NHS. 62.
- Deloitte UK. Connected health: how digital technology is transforming health and social care. https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/life-sciences-healthcare/deloitte-uk-connected-health.pdf.
- 11. British Academy. Unmet need in healthcare. (2017).
- 12. NHS England. Open API policy.
- Mehr, S. R. & Zimmerman, M. P. Reviewing the Unmet Needs of Patients with Multiple Sclerosis.
 8, 6 (2015).
- 14. Royal College of Physicians. MS Audit National Report. (2011).
- 15. on behalf of the MAGNIMS study group *et al.* The current role of MRI in differentiating multiple sclerosis from its imaging mimics. *Nat. Rev. Neurol.* **14**, 199–213 (2018).

- 16. Paul, A., Comabella, M. & Gandhi, R. Biomarkers in Multiple Sclerosis. *Cold Spring Harb. Perspect. Med.* **9**, a029058 (2019).
- Loveless, S. *et al.* Tissue microarray methodology identifies complement pathway activation and dysregulation in progressive multiple sclerosis: Tissue microarray methodology. *Brain Pathol.* 28, 507–520 (2018).
- 18. Hendrickx, D. A. E. *et al.* Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions. *Front. Immunol.* **8**, 1810 (2017).
- Liguori, M. *et al.* Proteomic Profiling in Multiple Sclerosis Clinical Courses Reveals Potential Biomarkers of Neurodegeneration. *PLoS ONE* 9, e103984 (2014).
- 20. Nimse, S. B., Sonawane, M. D., Song, K.-S. & Kim, T. Biomarker detection technologies and future directions. *The Analyst* **141**, 740–755 (2016).
- Grist, J. T. *et al.* Quantifying normal human brain metabolism using hyperpolarized [1– 13C]pyruvate and magnetic resonance imaging. *NeuroImage* 189, 171–179 (2019).
- 22. Multiple Sclerosis Society UK. A new way to measure metabolism in the brain.pdf.
- 23. Wells, B. Google partners with Biogen on multiple sclerosis. *Pharmafile*.
- 24. EPSRC. An integrated MRI tool to map brain microvascular and metabolic function_ improving imaging diagnostics for human brain disease.
- 25. IXICO. IXICO MS. https://ixico.com/therapeutic-areas/multiple-sclerosis/.
- 26. icometrix. icobrain-ms. https://icometrix.com/products/icobrain-ms.
- 27. icometrix. icometrix_icobrain FDA approval.pdf.
- 28. Kolaczkowski, L. Dr. Google will see you now. Really. 9.
- 29. Khaligh-Razavi, S.-M., Sadeghi, M., Khanbagi, M., Kalafatis, C. & Nabavi, S. M. A selfadministered, artificial intelligence (AI) platform for cognitive assessment in multiple sclerosis (MS). http://biorxiv.org/lookup/doi/10.1101/611335 (2019) doi:10.1101/611335.
- 30. NHS England. NHS England_NHS aims to be a world leader in artificial intelligence and machine learning within 5 years.pdf.

- 31. Donnelly, T. & Roberts, D. S. Introducing NHSX's new national artificial intelligence laboratory. 3.
- 32. NHS. Multiple sclerosis diagnosis.
- Arani, L., Hosseini, A., Asadi, F., Masoud, S. & Nazemi, E. Intelligent Computer Systems for Multiple Sclerosis Diagnosis: a Systematic Review of Reasoning Techniques and Methods. *Acta Inform. Medica* 26, 258 (2018).
- 34. Niino, M. & Miyazaki, Y. Individualizing therapy for multiple sclerosis: a focus on diseasemodifying drugs. *Clin. Pract.* **11**, 105–115 (2014).
- Gafson, A., Craner, M. J. & Matthews, P. M. Personalised medicine for multiple sclerosis care. *Mult. Scler. J.* 23, 362–369 (2017).
- 36. Kalincik, T. *et al.* Towards personalized therapy for multiple sclerosis: prediction of individual treatment response. *Brain* **140**, 2426–2443 (2017).
- 37. UCL. AI used to detect brain's response to multiple-sclerosis treatment.
- Kanber, B. *et al.* High-dimensional detection of imaging response to treatment in multiple sclerosis. *Npj Digit. Med.* 2, 49 (2019).
- Harris, V., Tuddenham, J. & Sadiq, S. Biomarkers of multiple sclerosis: current findings. *Degener*. *Neurol. Neuromuscul. Dis.* Volume 7, 19–29 (2017).
- 40. Brichetto, G., Pedullà, L., Podda, J. & Tacchino, A. Beyond center-based testing: Understanding and improving functioning with wearable technology in MS. *Mult. Scler. J.* **25**, 1402–1411 (2019).
- 41. Hibbard, J. & Gilburt, H. Supporting people to manage their health: An introduction to patient activation. 54.
- 42. Giunti, G., Guisado Fernández, E., Dorronzoro Zubiete, E. & Rivera Romero, O. Supply and Demand in mHealth Apps for Persons With Multiple Sclerosis: Systematic Search in App Stores and Scoping Literature Review. *JMIR MHealth UHealth* **6**, e10512 (2018).
- 43. Salimzadeh, Z., Damanabi, S., Kalankesh, L. & Ferdousi, R. Mobile Applications for Multiple Sclerosis: a Focus on Self-Management. *Acta Inform. Medica* **27**, 12 (2019).
- 44. Novartis. Novartis_SymTrac.pdf. https://www.novartis.co.uk/symtractm.

45. Beta seron. myBETAapp[™] BETASERON[®] (interferon beta-1b).pdf.

https://www.betaseron.com/betaconnect-system/mybetaapp/.

- 46. MS Buddy. Multiple Sclerosis Chat App Apps on Google Play.https://play.google.com/store/apps/details?id=com.healthline.msbuddy&hl=en GB.
- Appxient. My Multiple Sclerosis Diary on Google Play.
 https://play.google.com/store/apps/details?id=com.appxient.mymsdiary&hl=en_GB.
- 48. Bournemouth University. Creating a FACETS digital toolkit to promote quality of life of people with multiple sclerosis.
- 49. Shift.ms. Thought sort.
- 50. Basic Home Infusion. Basic MS Explorer. https://www.basicmsexplorer.com.
- 51. Becare. MS Link. https://becarelink.com/our-products/multiple-sclerosis/.
- 52. BDDevCo. Cure MS on the App Store. https://apps.apple.com/us/app/cure-ms/id364907194.
- Black Diamond Labs. Healthstories MS on the App Store.pdf. https://apps.apple.com/us/app/healthstories-ms/id1263584151.
- The Wyanoke Group. Multiple Sclerosis Virtual Education Academy on the App Store. https://apps.apple.com/us/app/multiple-sclerosis-virtual-education-academy/id965247008.
- 55. Martin Hartl. Noteness on the App Store.

https://apps.apple.com/us/app/noteness/id639289114.

- 56. SKrieger MD, LLC. MS Topography on the App Store. https://apps.apple.com/us/app/mstopography/id1222099204.
- Multiple Sclerosis Foundation. MSFocus Radio on the App Store.pdf. https://apps.apple.com/us/app/msfocus-radio/id875318246.
- Digital Edition Technology. My MS-UK on the App Store.pdf. https://apps.apple.com/gb/app/my-ms-uk/id1125397743.
- 59. International Medical press. Multiple Sclerosis Spotlight on the App Store.pdf.

https://apps.apple.com/us/app/multiple-sclerosis-spotlight/id1210835024.

- 60. Bloomquist, D. E. Multiple Sclerosis 101-Treatment and Recovery Tips 17+. Mult. Scler. 3.
- 61. KingfishApps. Multiple Sclerosis Chat Apps on Google Play.pdf.

https://play.google.com/store/apps/details?id=mschatpack.kingfishsoft.com.mschat.

- KingfishApps. Multiple Sclerosis Messenger Apps on Google Play.pdf. https://play.google.com/store/apps/details?id=mssenderpack.kingfishsoft.com.multiplesclerosis sender&hl=en.
- MyHealthTeams. Multiple Sclerosis Support on the App Store.pdf.
 https://apps.apple.com/us/app/multiple-sclerosis-support/id628041222.
- 64. Okuda, D. Pre-Meet: Multiple Sclerosis 12+. 3.
- 65. Darin Okuda. MS Fatigue Fix on the App Store. https://apps.apple.com/us/app/ms-fatiguefix/id1289101913.
- 66. Okuda, D. Understanding MRI: MS 17+. 3.
- 67. Okuda, D. T. MS Relapse Tool by Darin T. Okuda, M.D. 2.
- 68. Ardireo. Pain Solutions. https://www.ardireo.com/pain-solutions.
- 69. Feys, P. & Straudi, S. Beyond therapists: Technology-aided physical MS rehabilitation delivery. *Mult. Scler. J.* **25**, 1387–1393 (2019).
- Massetti, T. *et al.* Virtual reality in multiple sclerosis A systematic review. *Mult. Scler. Relat. Disord.* 8, 107–112 (2016).
- Xiao, Z. G. & Menon, C. A Review of Force Myography Research and Development. Sensors 19, 4557 (2019).
- Riquelme, F., Espinoza, C., Rodenas, T., Minonzio, J.-G. & Taramasco, C. eHomeSeniors Dataset: An Infrared Thermal Sensor Dataset for Automatic Fall Detection Research. *Sensors* 19, 4565 (2019).
- Yousef, A., Jonzzon, S., Suleiman, L., Arjona, J. & Graves, J. S. Biosensing in multiple sclerosis. *Expert Rev. Med. Devices* 14, 901–912 (2017).
- 74. Gripable. How it works.

- 75. Muoio, D. Pilot program will provide motion tracking wearables to UK Parkinson's disease patients. 14.
- 76. Tan EE. The role of Personal KinetiGraph fluctuator score in quantifying the progression of motor fluctuations in Parkinson's disease.
- 77. Michael J Fox Foundation. Wearable Devices: Revolutionary Tools for Parkinson's Research.
- 78. Sensixa. Sensixa Products.
- 79. Royal Society. iHuman: Blurring lines between mind and machine.
- McKelvey, C. Deep Brain Stimulation Helpful in Some Patients With MS Tremor. *Mult. Scler. Discov. Forum* (2014) doi:10.7493/msdf.10.13214.1.
- Tierney, T. S. Deep brain stimulation foundations and future trends. *Front. Biosci.* 23, 162–182 (2018).
- National Institute for Care and Excellence. Deep brain stimulation for tremor and dystonia (excluding Parkinson's disease). (2006).
- American Diabetes Association. 7. Diabetes Technology: Standards of Medical Care in Diabetes—2019. Diabetes Care 42, S71–S80 (2019).
- 84. Muegge, B. D. & Tobin, G. S. Improving Diabetes Care with Technology. 5.
- 85. Welldoc. Welldoc.com.
- 86. Glooko. Glooko site.pdf. https://www-int.glooko.com/.

